Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

»ýü¿ë TiÇÕ±ÝÀÇ ¾ç±ØºÐ±ØƯ¼º¿¡ ¹ÌÄ¡´Â Zr ¹× PdÀÇ ¿µÇâ

Effect of Zr and Pd on Anodic Polarization Properties of Titanium Alloys for Biomedical Implant

´ëÇÑÄ¡°ú±âÀçÇÐȸÁö 1999³â 26±Ç 2È£ p.155 ~ 164
¼Ò¼Ó »ó¼¼Á¤º¸
Á¤Á¾Çö/Jong Hyun Jung ¹é½Â³²/À̱æÈ«/ÃÖÄ¥³²/ÀÌ»ó¿­/³ëÇÐ/Seung Nam Baek/Kil Hong Lee/Chil Nam Choi/Sang Youl Lee/Hak Noh

Abstract

°á·Ð
TiÀÇ ÀϺθ¦ »ýüÀûÇÕ¼ºÀÌ ¿ì¼öÇÑ Zr, Pd, CrÀ¸·Î ġȯÇÑ Ti-X%Zr-Y%Pd-0.15%Cr(X:1
0¡­20, Y:0.0¡­0.4)Çձݿ¡¼­ ÷°¡¿ø¼ÒµéÀÌ Á¤Çü¿Ü°ú¿Í Ä¡°ú¿ë »ýüÀç·á·Î¼­ÀÇ ³»ºÎ½Ä¼º¿¡ ¹Ì
Ä¡´Â ¿µÇâÀ» Àü±âÈ­ÇÐÀûÀ¸·Î Á¶»çÇÑ °á°ú ´ÙÀ½°ú °°Àº °á·ÐÀ» ¾ò¾ú´Ù.
1. Ti-X%Zr-0.4%Pd-0.15%Cr(X:10¡­20)ÇÕ±ÝÀº ZrÇÔ·®ÀÌ Áõ°¡ÇÒ ¼ö·Ï ºÎµ¿Å±¸¿ª 1.0V
vs. SCEÀüÀ§ÀÇ Àü·ù¹Ðµµ(I1.0)´Â ³·¾ÆÁö°í, Àü·ù¹Ðµµ 0.1A¡¤m2
ÀÇ ÀüÀ§(E0.1 vs. SCE)´Â ³ô¾ÆÁ® ZrÇÔ·®ÀÌ 20%À϶§ ³»ºÎ½Ä¼ºÀº °¡Àå ¿ì¼öÇÏ
°Ô ³ªÅ¸³µ´Ù.
2. Ti-20%Zr-Y%Pd-0.15%Cr(Y:0.0¡­0.4)ÇÕ±ÝÀº Pd°¡ ÷°¡µÈ °æ¿ì°¡ ÷°¡µÇÁö ¾ÊÀº °æ¿ì
¿¡ ºñÇØ ºÎµ¿Å±¸¿ª 1.0V vs. SCEÀüÀ§ÀÇ Àü·ù¹Ðµµ(I1.0)´Â ´ëü·Î ³·°í, Àü·ù
¹Ðµµ 0.1A¡¤m2ÀÇ ÀüÀ§(E0.1 vs. SCE)µéÀº ³ô¾ÆÁ® ³»ºÎ½Ä¼ºÀº
¿ì¼öÇÏ°Ô ³ªÅ¸³µ´Âµ¥, PdÇÔ·®ÀÌ 0.2%À϶§ ³»ºÎ½Ä¼ºÀÌ °¡Àå ¿ì¼öÇÏ°Ô ³ªÅ¸³µ´Ù.
3. Ti-20%Zr-0.2%Pd-0.15%CrÇÕ±Ý, CP Ti ¹× Ti-6%Al-4%VÇÕ±ÝÀÇ °æ¿ì, ºÎµ¿Å±¸¿ª
1.0V vs. SCEÀüÀ§ÀÇ Àü·ù¹Ðµµ(I1.0)´Â Ti-20%Zr-0.2%Pd-0.15%CrÇÕ±Ý, CP
Ti, Ti-6%Al-4%VÇÕ±Ý ¼øÀ¸·Î ³ô¾ÆÁö°í, Àü·ù¹Ðµµ 0.1A¡¤m2ÀÇ ÀüÀ§
(E0.1 vs. SCE)´Â Ti-20%Zr-0.2%Pd-0.15%CrÇÕ±Ý, CP Ti, Ti-6%Al-4%VÇÕ
±Ý ¼øÀ¸·Î ³·¾ÆÁ® ³»ºÎ½Ä¼ºÀº Ti-20%Zr-0.2%Pd-0.15%CrÇÕ±ÝÀÌ °¡Àå ¿ì¼öÇÏ°Ô ³ªÅ¸³µ´Ù.
4. Co-30%Cr-6%MoÇÕ±ÝÀº TiÇձݿ¡ ºñÇØ ³·Àº ÀüÀ§ÀÎ 700mV vs. SCE ºÎ±Ù¿¡¼­ Àü·ù
¹Ðµµ°¡ ±Þ»ó½ÂÇϱ⠶§¹®¿¡ ºÎµ¿Å±¸¿ªÀÌ ¸Å¿ì Á¼°í TiÇձݿ¡ ºñÇØ 5%HCl¿¡¼­ÀÇ ³»ºÎ½Ä¼º
Àº ÁÁÁö ¾Ê°Ô ³ªÅ¸³µ´Ù.
5. Ti-20%Zr-0.2%Pd-0.15%CrÇÕ±ÝÀÇ ºÎµ¿ÅÂÇǸ· Á¶¼ºÀº ÁÖ·Î TiO2, Ti±Ý
¼ÓÈ­ÇÕ¹°, ZrO2 µîÀ¸·Î Çü¼ºµÇ¾î ÀÖÀ¸¸ç, Ti-6%Al-4%VÇÕ±ÝÀÇ ºÎµ¿ÅÂÇǸ·Á¶
¼ºÀº TiO2, Ti±Ý¼ÓÈ­ÇÕ¹°, Al2O3,
V2O3µîÀ¸·Î ÁÖ·Î Çü¼ºµÇ¾î ÀÖ´Ù.
#ÃÊ·Ï#
The corrosion resistance of Ti-Zr-Pd-Cr alloys were investigated in order to reveal
their possible use for new biomedical implant materials.
Titanium alloys consisting of 10¡­20%Zr, 0.0¡­0.4%Pd and 0.15%Cr were prepared by
vacuum arc-melting as alloying elements instead of using harmful Al and V in response
to recent concerns about the long term safety of Ti-6%Al-4%V ELI alloys.
The Ti-Zr-Pd-Cr alloys were heat-treated at 1000¡É for 2hrs under a vacuum
atmosphere. The effect of Zr and Pd for Ti alloys on the corrosion resistance for
biomedical implant was investigated by measuring the anodic polarization curve at 37¡É
in 5£¥HCl solution deaerated by high-purity N2 gas bubbling.
The critical current density for passivation(Ic) of Ti-Zr-Pd-Cr alloys
didn't reveal markedly. Passive current density(I1.0) at 1.0V vs. SCE of
this alloys decreased with increasing Zr in the contents from 10 to 20% and decreased
with containing Pd in the range from 0.2 to 0.4%. Potential(E0.1) at 0.1A¡¤
m-2 of this alloys increased with increasing Zr in the contents from 10 to
20% and increased with containing Pd in the range from 0.2 to 0.4%.
For the Co-30%Cr-6%Mo alloy, passivity zone is narrow, and a rapid increase of
current density result from the low potential in comparison with Ti and Ti alloys.
The corrosion resistance by the anodic polarization of Ti-20%Zr-0.2%Pd-0.15%Cr alloy
was found to be superior to those of the Ti, Ti-6%Al-4%V alloy and Co-30%Cr-6%Mo
alloy.
The passive films formed on the Ti-20%Zr-0.2%Pd-0.15%Cr and Ti-6%Al-4%V alloys
in the anodic polarization test consist mainly of TiO2, Ti compound,
ZrO2, Al2O3 and
V2O3.

anodic polarization; corrosion resistance; critical current density for passivation(IC); titanium;

Å°¿öµå

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI